Link to home

Factors Influencing Development of Root Rot on Ginseng Caused by Cylindrocarpon destructans

December 2005 , Volume 95 , Number  12
Pages  1,381 - 1,390

Mahfuzur Rahman and Zamir K. Punja

Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6 Canada


Go to article:
Accepted for publication 5 July 2005.
ABSTRACT

The fungus Cylindrocarpon destructans (Zins) Scholten is the cause of root rot (disappearing root rot) in many ginseng production areas in Canada. A total of 80 isolates of C. destructans were recovered from diseased roots in a survey of ginseng gardens in British Columbia from 2002-2004. Among these isolates, 49% were classified as highly virulent (causing lesions on unwounded mature roots) and 51% were weakly virulent (causing lesions only on previously wounded roots). Pectinase and polyphenoloxidase enzymes were produced in vitro by C. destructans isolates when they were grown on pectin and phenol as a substrate, respectively. However, highly virulent isolates produced significantly (P < 0.001) higher enzyme levels compared with weakly virulent isolates. Histopathological studies of ginseng roots inoculated with a highly virulent isolate revealed direct hyphal penetration through the epidermis, followed by intracellular hyphal growth in the cortex. Subsequent cell disintegration and accumulation of phenolic compounds was observed. Radial growth of highly and weakly virulent isolates on potato dextrose agar was highest at 18 and 21°C, respectively and there was no growth at 35°C. Mycelial mass production was significantly (P ≤ 0.01) lower at pH 7.0 compared with pH 5.0. To study the effects of pH (5.0 and 7.0) and wounding on disease development, ginseng roots were grown hydroponically in Hoagland's solution. Lesions were significantly larger (P < 0.001) at pH 5.0 compared with pH 7.0 and wounding enhanced disease by a highly virulent isolate at both pHs. In artificially infested soil, 2-year-old ginseng roots were most susceptible to Cylindrocarpon root rot among all root ages tested (1 to 4 years) when evaluated using a combined scale of disease incidence and severity. Root rot severity was significantly (P < 0.002) enhanced by increasing the inoculum density from 3.45 × 102 CFU/g of soil to 1.86 × 103 CFU/g of soil. Disease severity was higher at 20°C compared with 15 and 25°C and at -0.02 MPa soil moisture compared with -0.005 and -0.001 MPa. A significant interaction between soil moisture and temperature was observed for root rot severity.


Additional keywords: disappearing root rot , epidemiology , Panax quinquefolius , pathogenicity .

© 2005 The American Phytopathological Society