Link to home

Forensic Pathology of Canadian Bread Wheat: The Case of Tan Spot

February 2005 , Volume 95 , Number  2
Pages  144 - 152

Lakhdar Lamari , Brent D. McCallum , and Ron M. dePauw

First author: Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; second author: Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, MB, R3T 2M9 Canada; and third author: SPARC, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2, Canada


Go to article:
Accepted for publication 7 October 2004.
ABSTRACT

Pyrenophora tritici-repentis causes necrosis and chlorosis in its wheat host. Susceptibility to races 2 (necrosis) and 5 (chlorosis) of the pathogen is known to be mediated by Ptr ToxA and Ptr ToxB, respectively. Sensitivity to each toxin is controlled by a single dominant and independently inherited gene. We used sensitivity to Ptr ToxA and Ptr ToxB as two genetic markers to investigate the origin and the state of tan spot susceptibility in Canadian Western Red Spring (CWRS) wheat over a period of more than a century. Sensitivity to Ptr ToxA, the toxin produced by nearly all isolates of the pathogen collected in the past 20 years in western Canada, appears to have been present in the first major cultivar, Red Fife, grown massively in the late 1800s. Sensitivity then was transmitted unknowingly into Canadian wheat lines through extensive use of backcrossing to maintain the Marquis-Thatcher breadmaking quality. Sensitivity to Ptr ToxA, which nearly disappeared from cultivars grown in western Canada in the 1950s, was reintroduced in the 1960s and unintentionally bred into many of the present-day cultivars. Sensitivity to Ptr ToxB, a toxin rarely found in isolates from western Canada, appeared with the release of Thatcher in 1934 and was transferred to many cultivars through backcross programs. In spite of large areas planted to Ptr ToxAand Ptr ToxB-sensitive cultivars over decades, tan spot epidemics remained sporadic until the 1970s. The results of this study raise the problem of the narrowing genetic base of CWRS wheat lines and the potential for unanticipated threats from plant pathogens. The intercrossing of genetically diverse material in one Canadian wheat breeding program resulted in the release of several modern cultivars with resistance to tan spot. The absence of wild-type Ptr ToxB-producing isolates in western Canada remains unexplained, given that sensitivity to Ptr ToxB was present continuously in western Canadian cultivars grown on vast areas for more than 70 years.



© 2005 The American Phytopathological Society