November
2008
, Volume
98
, Number
11
Pages
1,171
-
1,178
Authors
J. Diéguez-Uribeondo,
H. Förster, and
J. E. Adaskaveg
Affiliations
First author: Department of Mycology, Real Jardín Botánico CSIC, 28014 Madrid, Spain; second author: Department of Plant Pathology, University of California, Davis 95616; and third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521.
Go to article:
RelatedArticle
Accepted for publication 22 July 2008.
Abstract
ABSTRACT
Modulation of pH within the host during infection of almond by the anthracnose pathogen Colletotrichum acutatum was studied using confocal scanning laser microscopy and the dual emission fluorescence indicator SNARF-1. This highly sensitive method allowed visualization of the spatial distribution of localized pathogen-induced pH modulation within and in proximity to fungal infection structures in host tissue at the cellular level. Ratiometric measurement of fluorescence at two emission wavelengths and in situ calibration allowed the quantification of pH ranges. After incubation of leaf epidermal tissue with SNARF-1, distinct alkaline (pH 8 to ≥9), red-spectrum (650 nm wave length) fluorescent zones developed as partial or complete halos around many fungal appressoria and in infection vesicles at 24 to 36 h after inoculation. In samples taken after 48 to 72 h, colonizing hyphae in the biotrophic phase and subsequently in the necrotrophic phase were also emitting the red fluorescence that extended into the surrounding host tissue, as also verified by depth analyses. Host epidermal cells were intact and apparently alive during the fungal alkalization process, with no visible disruption of cell structure. Generally, the pH of epidermal cells in noninoculated samples or in areas away from the infection in inoculated samples was lower than pH 7 with green (i.e., 500 to 550 nm wave length) fluorescence detected. Using standard electrodes, a significant increase in pH and ammonia concentration in leaf and fruit tissue was also measured but only at advanced stages of disease. In contrast, hyphae of the pathogen Alternaria alternata were mostly acidic and no change in fluorescence was found inside invaded host cells. The sequence of events in the C. acutatum--almond interaction includes penetration, production of ammonia by C. acutatum, and subsequent pH modulation within almond epidermal tissue to an alkaline environment that leads to further colonization of the host.
JnArticleKeywords
Additional keywords:host-pathogen interactions, histology, cellular pH shifts.
Page Content
ArticleCopyright
© 2008 The American Phytopathological Society