Link to home

Molecular Signature of Differential Virulence in Natural Isolates of Erwinia amylovora

February 2010 , Volume 100 , Number  2
Pages  192 - 198

Dongping Wang, Schuyler S. Korban, and Youfu Zhao

First and third authors: Department of Crop Sciences, and second author: Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana 61801.


Go to article:
Accepted for publication: 21 October 2009.
ABSTRACT

Erwinia amylovora, the causal agent of fire blight, is considered to be a genetically homogeneous species based on physiological, biochemical, phylogenetic, and genetic analysis. However, E. amylovora strains exhibiting differential virulence are isolated from nature. The exopolysaccharide amylovoran and type III secretion system (T3SS) are two major yet separate virulence factors in E. amylovora. The objective of this study was to investigate whether there is a correlation between E. amylovora virulence and levels of virulence gene expression. Four wild-type strains (Ea1189, Ea273, Ea110, and CFBP1430), widely used in studies of E. amylovora pathogenesis, have been analyzed and compared. E. amylovora strains Ea273 and Ea110 elicited higher severity of disease symptoms than those of Ea1189 and CFBP1430 on apple cv. Golden Delicious and G16 apple root stock plants but not on susceptible Gala plants. In addition, Ea273 and Ea110 elicited severe hypersensitive responses within shorter periods of time at lower inoculum concentrations than those of Ea1189 and CFBP1430 on tobacco plants. Further molecular analyses have revealed that amylovoran production and expression of both amylovoran (amsG) and T3SS (dspE and hrpL) genes were significantly higher in Ea273 and Ea110 than those in Ea1189 and CFBP1430. Other phenotypes such as swarming motility in these four strains also differed significantly. These results indicate that E. amylovora strains of different origin can be divided into subgroups based on molecular signatures of virulence gene expression. Therefore, these molecular signatures may be used to differentiate E. amylovora strains, which may have taxonomical and evolutionary implications.


Additional keywords:genetic diversity, host range.

© 2010 The American Phytopathological Society