First, second, and fourth authors: Aristotelian University of Thessaloniki, School of Agriculture, Laboratory of Plant Pathology, Thessaloniki, Greece; and third author: Agricultural University of Athens, Laboratory of Pesticide Science, Athens, Greece.
ABSTRACT
Respiration inhibitors such as the succinate dehydrogenase inhibitors (SDHIs) and the quinone outside inhibitors (QoIs) are fungicide classes with increasing relevance in gray mold control. However, recent studies have shown that dual resistance to both fungicide classes is a common trait in Botrytis cinerea populations from several hosts throughout the world. Resistance of B. cinerea to SDHIs is associated with several mutations in the sdhB, sdhC, and sdhD genes, while resistance to QoIs, in most cases, is associated with the G143A mutation in the cytb gene. The objective of the current study was to investigate the fitness and the competitive ability of B. cinerea field strains possessing one of the H272Y/R/L, N230I, or P225F sdhB substitutions and the G143A mutation of cytb. Fitness parameters measured were (i) mycelial growth and conidia germination in vitro, (ii) aggressiveness and sporulation capacity in vivo, (iii) sclerotia production in vitro and sclerotia viability under different storage conditions, and (iv) sensitivity to oxidative stress imposed by diquat treatments. The competitive ability of the resistant isolates was measured in the absence and presence of the SDHI fungicides boscalid and fluopyram selection pressure. The measurements of individual fitness components showed that the H272R/G143A isolates had the lower differences compared with the sensitive isolates. In contrast, the groups of H272Y/L/G143A, N230I/G143A, and P225F/G143A isolates showed reduced fitness values compared with the sensitive isolates. Isolates possessing only the cytb G143A substitution did not show any fitness cost. The competition experiments showed that, in the absence of fungicide selection pressure, after four disease cycles on apple fruit, the sensitive isolates dominated in the population in all the mixtures tested. In contrast, when the competition experiment was conducted under the selection pressure of boscalid, a gradual decrease in the frequency of sensitive isolates was observed, whereas the frequency of H272L and P225F isolates was increased. When the competition experiment was conducted in the presence of fluopyram, the sensitive isolates were eliminated even after the first disease cycle and the P225F mutants dominated in the population. Such results suggest that the sdhB mutations may have adverse effects on the mutants. The observed dominance of sensitive isolates in the competition experiments conducted in the absence of fungicides suggest that the application of SDHIs in alternation schemes may delay the selection or reduce the frequency of SDHI-resistant mutants.