First, second, and third authors: Department of PSES, and third author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID.
ABSTRACT
The I gene is a single, dominant gene conferring temperature-sensitive resistance to all known strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris). However, the closely related Bean common mosaic necrosis virus (BCMNV) induces whole plant necrosis in I-bearing genotypes of common bean, and the presence of additional, recessive genes is required to prevent this severe whole plant necrotic reaction caused by BCMNV. Almost all known BCMNV isolates have so far been classified as having pathotype VI based on their interactions with the five BCMV resistance genes, and all have a distinct serotype A. Here, we describe a new isolate of BCMV, RU1M, capable of inducing whole plant necrosis in the presence of the I gene, that appears to belong to pathotype VII and exhibits B-serotype. Unlike other isolates of BCMV, RU1M was able to induce severe whole plant necrosis below 30°C in bean cultivar Jubila that carries the I gene and a protective recessive gene bc-1. The whole genome of RU1M was cloned and sequenced and determined to be 9,953 nucleotides long excluding poly(A), coding for a single polyprotein of 3,186 amino acids. Most of the genome was found almost identical (>98%) to the BCMV isolate RU1-OR (also pathotype VII) that did not induce necrotic symptoms in ‘Jubila’. Inspection of the nucleotide sequences for BCMV isolates RU1-OR, RU1M, and US10 (all pathotype VII) and three closely related sequences of BCMV isolates RU1P, RU1D, and RU1W (all pathotype VI) revealed that RU1M is a product of recombination between RU1-OR and a yet unknown potyvirus. A 0.8-kb fragment of an unknown origin in the RU1M genome may have led to its ability to induce necrosis regardless of temperature in beans carrying the I gene. This is the first report of a BCMV isolate inducing temperature-insensitive necrosis in an I gene containing bean genotype.