Authors
Ozgur Akgun
Karabulut
,
Uludag University, Faculty of Agriculture, Department of Plant Protection, 16384 Gorukle-Bursa, Turkey
;
Joseph L.
Smilanick
,
Franka Mlikota
Gabler
, and
Monir
Mansour
,
United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
; and
Samir
Droby
,
Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
ABSTRACT
The yeast Metschnikowia fructicola, ethanol, and sodium bicarbonate (SBC), alone or in combinations, were applied to table grapes on vines 24 h before harvest to control the incidence of postharvest diseases. In four experiments, all significantly reduced the total number of decayed berries caused by Botrytis cinerea, Alternaria spp., or Aspergillus niger after storage for 30 days at 1°C followed by 2 days at 20°C. In three experiments, a mean gray mold incidence (caused by B. cinerea) of 34.2 infected berries per kilogram among untreated grape was reduced by Metschnikowia fructicola at 2 × 107 CFU/ml, ethanol at 50% (vol/vol), or SBC at 2% (wt/vol) to 12.9, 8.1, or 10.6 infected berries per kilogram, respectively. Ethanol, SBC, and SO2 generator pads were similarly effective. M. fructicola effectiveness was not improved when combined with ethanol or SBC treatments. Ethanol and yeast treatments did not harm the appearance of the grapes. M. fructicola and SBC left noticeable residues, and SBC caused some visible phytotoxicity to the rachis and berries. Ethanol applied at 50% (vol/vol) reduced epiphytic fungal and bacterial populations by about 50% compared with controls. M. fructicola populations persisted on berries during storage when applied alone or after ethanol treatments, whereas SBC reduced its population significantly.