ABSTRACT
The effect of azoxystrobin on potato black dot and the role of seed- and soilborne inocula of Colletotrichum coccodes in the development of black dot were evaluated in the field using two potato seed generations (generation 1 and 3) of the susceptible cvs. Norkotah Russet and Russet Burbank over 3 years (2002 to 2004). Plants of Norkotah Russet and Russet Burbank treated with azoxystrobin had 13 and 23% higher yields, respectively, than nontreated plants in 2003. Disease severity on both cultivars was reduced 19 to 81%, and 22 to 81% on above- and belowground stem sections, respectively, when plants were treated with azoxystrobin. Plants of both cultivars that were treated with azoxystrobin had 9 to 26% less infected progeny tubers than the nontreated plants. These results indicated the efficacy of azoxystrobin to reduce black dot severity on both stems and progeny tubers. The roles of seed- and soilborne inocula in disease development were evaluated in 2003 and 2004 using generation 1 and 3 seed tubers. The incidence of C. coccodes in generation 1 mother tubers of Norkotah Russet and Russet Burbank were 2 and 16% in 2003, respectively, and 0 and 30% in 2004, respectively. The incidence of C. coccodes in generation 3 mother tubers of Norkotah Russet and Russet Burbank were 14 and 49% in 2003, respectively, and 12 and 38% in 2004, respectively. Generation 1 plants of Norkotah Russet had 36 and 13% greater yield than generation 3 plants in 2003 and 2004, respectively. In 2004, generation 1 plants of Norkotah Russet and Russet Burbank had 26 and 15% greater disease severity, respectively, on belowground stem than generation 3 plants. Generation 1 plants of Norkotah Russet had 7.5 and 11% more infected progeny tubers in 2003 and 2004, respectively, than generation 3. Significant differences for yield reduction and incidence of infected progeny tubers between the two seed generations were not recorded for Russet Burbank, suggesting that the effect of inoculum source of C. coccodes on black dot severity may be cultivar specific.
Additional keywords:
seed-tuber generation,
seedborne inoculum,
soilborne inoculum