Link to home

Spatial Heterogeneity of the Incidence of Powdery Mildew on Hop Cones

November 2006 , Volume 90 , Number  11
Pages  1,433 - 1,440

David H. Gent , United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Forage Seed and Cereal Research Unit , and Walter F. Mahaffee , USDA-ARS, Horticultural Crops Research Laboratory, Oregon State University, Department of Botany and Plant Pathology, Corvallis 97331 ; and William W. Turechek , USDA-ARS, Fruit Laboratory, Beltsville, MD 20705-2350



Go to article:
Accepted for publication 27 June 2006.
ABSTRACT

The spatial heterogeneity of the incidence of hop cones with powdery mildew (Podosphaera macularis) was characterized from transect surveys of 41 commercial hop yards in Oregon and Washington from 2000 to 2005. The proportion of sampled cones with powdery mildew ( p) was recorded for each of 221 transects, where N = 60 sampling units of n = 25 cones assessed in each transect according to a cluster sampling strategy. Disease incidence ranged from 0 to 0.92 among all yards and dates. The binomial and beta-binomial frequency distributions were fit to the N sampling units in a transect using maximum likelihood. The estimation procedure converged for 74% of the data sets where p > 0, and a loglikelihood ratio test indicated that the beta-binomial distribution provided a better fit to the data than the binomial distribution for 46% of the data sets, indicating an aggregated pattern of disease. Similarly, the C(α) test indicated that 54% could be described by the beta-binomial distribution. The heterogeneity parameter of the beta-binomial distribution, θ, a measure of variation among sampling units, ranged from 0.01 to 0.20, with a mean of 0.037 and a median of 0.015. Estimates of the index of dispersion ranged from 0.79 to 7.78, with a mean of 1.81 and a median of 1.37, and were significantly greater than 1 for 54% of the data sets. The binary power law provided an excellent fit to the data, with slope and intercept parameters significantly greater than 1, which indicated that heterogeneity varied systematically with the incidence of infected cones. A covariance analysis indicated that the geographic location (region) of the yards and the type of hop cultivar had little effect on heterogeneity; however, the year of sampling significantly influenced the intercept and slope parameters of the binary power law. Significant spatial autocorrelation was detected in only 11% of the data sets, with estimates of first-order autocorrelation, r1, ranging from -0.30 to 0.70, with a mean of 0.06 and a median of 0.04; however, correlation was detected in only 20 and 16% of the data sets by median and ordinary runs analysis, respectively. Together, these analyses suggest that the incidence of powdery mildew on cones was slightly aggregated among plants, but patterns of aggregation larger than the sampling unit were rare (20% or less of data sets). Knowledge of the heterogeneity of diseased cones was used to construct fixed sampling curves to precisely estimate the incidence of powdery mildew on cones at varying disease intensities. Use of the sampling curves developed in this research should help to improve sampling methods for disease assessment and management decisions.


Additional keywords: Humulus lupulus

The American Phytopathological Society, 2006