Authors
D. L.
Seifers
,
Professor
, and
T. J.
Martin
,
Professor, Kansas State University Agricultural Research Center-Hays, Hays 67601
;
T. L.
Harvey
,
Professor, Department of Entomology, Kansas State University, Manhattan 66506
; and
S.
Haber
,
Cereal Research Center, Agriculture & Agri-Food Canada, Winnipeg, Canada
ABSTRACT
Wheat streak mosaic virus (WSMV) infection reduces seed yield and quality in wheat. These losses can be alleviated significantly by exploiting genetic host plant resistance. A new source of temperature-sensitive resistance to WSMV, KS03HW12, and its parental lines (KS97HW29/ KS97HW131//KS96HW100-5) were evaluated in both greenhouse and field conditions. Parental wheat lines were exposed to WSMV pressure under different temperatures in growth chambers to determine the stability of the resistance, and 2 years of field yield trials were conducted to confirm effectiveness. To determine the effectiveness of its resistance against a spectrum of isolates, KS03HW12 was tested against six different WSMV isolates of different geographic origins. Among the three pedigree parents, only one, KS97HW29, was resistant. The parental lines of KS97HW29 are not available for testing; therefore, the presumed origin of the resistance could not be further confirmed. None of the six tested WSMV isolates systemically infected KS03HW12 at 18°C. Yield of KS03HW12 in field tests was not different from healthy controls. Thus, the elite winter wheat KS03HW12 appears to be a stable and effective source of temperature-sensitive resistance to WSMV and should be useful for wheat breeding programs.