Authors
J. Th. J.
Verhoeven
,
C. C. C.
Jansen
, and
J. W.
Roenhorst
,
Plant Protection Service, Unit Virology, P.O. Box 9102, 6700 HC Wageningen, the Netherlands
;
S.
Steyer
,
CRA-W, Department of Biological Control and Plant Genetic Resources, Rue de Liroux 4, 5030 Gembloux, Belgium
; and
D.
Michelante
,
Federal Agency for the Safety of the Food Chain, Plant Protection and Safety of Plant Production, S. Bolivarlaan 30, 1000 Brussels, Belgium
During August of 2006, a sample of a tomato plant (Solanum lycopersicum, formerly Lycopersicum esculentum) from a greenhouse in Belgium was received for diagnosis. The plant showed severe growth reduction and the young leaves were chlorotic and distorted. In the greenhouse, the disease had been spreading slowly along the row. These observations suggested the presence of a viroid infection, and reverse transcriptase (RT)-PCR with two sets of universal pospiviroid primers (Pospi1-RE/FW and Vid-FW/RE; 3) yielded amplicons of the expected size (approximately 196 and 360 bp). Sequence analysis of the larger PCR product revealed that the genome was 358 nt and 100% identical to two isolates of Potato spindle tuber viroid (PSTVd) previously submitted to the NCBI GenBank (Accession Nos. AJ583449 from the United Kingdom and AY962324 from Australia). A pathogen associated with the symptomatic tomato plants was therefore identified as PSTVd. Tracing the origin of the infection revealed the following information: during November of 2005, 8-day-old tomato seedlings raised from seed by a Dutch nursery were transferred to a small part of the greenhouse of the Belgian grower; 7 to 8 weeks later, the plants were transplanted to their final destination; during May of 2006, the grower first observed growth reduction in a single plant; several weeks later, similar symptoms were observed in two more plants in the same row close to the first symptomatic plant; and by September, there were approximately 20 symptomatic tomato plants, all located in two adjacent rows. The viroid outbreak was fully eradicated by destroying all tomato plants in the affected rows as well as in two adjacent rows at both sides. The absence of further infections was confirmed by testing approximately 1,200 tomato plants in pooled samples for PSTVd by RT-PCR (2) and real-time RT-PCR (1). The origin and the method of introduction and spread of the viroid remain unclear.
References: (1) N. Boonham et al. J. Virol. Methods 116:139, 2004. (2) R. A. Mumford et al. Plant Pathol. 53:242, 2004. (3) J. Th. J. Verhoeven et al. Eur. J. Plant Pathol. 110:823, 2004.