Slender wheatgrass (Elymus trachycaulus (Link) Gould ex Shinners subsp. trachycaulus), family Poaceae, tribe Triticeae, is a native North American grass that is used as a livestock forage. Ustilago phrygica, a systemic ovary-smut fungus, is native to Turkey and West Asia and is pathogenic on Aegilops spp. and Taeniatherum caput-medusae (L.) Nevski subsp. asperum (Simonk.) Melderis (medusahead), an invasive weed in the western United States that is targeted for biological control. An isolate of the fungus (U.S. National Fungus Collections, BPI 871725; GenBank Accession No. DQ139961) was collected from medusahead in Turkey and screened for possible use in classical biological control of this weed. Screening was done in quarantine in a BSL-3 facility of the Foreign Disease-Weed Science Research Unit, USDA, ARS, Ft. Detrick, MD. The focus of screening was determination of host range of the fungus among related native and agriculturally important grasses in North America. A procedure was developed to consistently and quickly produce disease on medusahead and other grasses. Without vernalization, plants inoculated with U. phrygica will not produce smutted spikes (seedheads). Teliospores of the fungus were vacuum inoculated (1) onto caryopses (seeds) of medusahead and slender wheatgrass, which were then placed on moist germination paper in a petri dish or on moist vermiculite in plastic boxes. The dishes, sealed with Parafilm, and the boxes, covered with lids, were placed in a dark refrigerator at 3°C. After 8 weeks, all seedlings were transplanted into pots on a greenhouse bench at 22 to 25°C and 14 h light (photosynthetic photon flux density [PPFD] 620 μmol·s−1·m−2). The plants began to flower and produce smutted spikes 40 days later. These tests were repeated once. Fourteen of sixty medusahead plants from inoculated caryopses incubated on germination paper and nine of twenty-four plants from caryopses incubated on vermiculite became smutted and produced numerous smutted spikes per plant. Partial systemic infection was the norm, and all diseased plants had some spikes that were not diseased. One slender wheatgrass plant of nine plants grown from inoculated caryopses incubated on germination paper was also smutted and produced three diseased spikes. Nielsen (2) indicated susceptibility of slender wheatgrass to U. phrygica, but only as a single entry in a table under the synonym Agropyron trachycaulum (Link) Malte ex H. F. Lewis in a report on susceptibility of Aegilops spp. to U. phrygica. Because this is an obscure mention of the susceptibility of slender wheatgrass to U. phrygica, the fungus-host association does not explicitly appear in literature and is absent from relevant databases. Our tests with the fungus confirm that slender wheatgrass is susceptible to U. phrygica and lead us to conclude that the fungus would not be a good candidate for classical biological control of medusahead in North America. This formal report should establish this fungus-host association in literature and ensure reference in plant disease databases.
References: (1) C. C. Allison. Univ. Minn. Agric. Exp. Stn. Tech. Bull. August:1, 1936. (2) J. Nielsen. Can. J. Bot. 70:581, 1992.