Authors
Y.-W.
Kuo
,
M. R.
Rojas
, and
R. L.
Gilbertson
,
Department of Plant Pathology, University of California, 1 Shields Ave, Davis 95616
; and
W. M.
Wintermantel
,
USDA-ARS, 1636 East Alisal Street, Salinas, CA 93905
In August and September of 2006, melon plants (Cucumis melo L.) near Niland in California's Imperial Valley and near Yuma, AZ began exhibiting interveinal chlorosis and leaf mottling and spotting, symptoms resembling those resulting from infection by viruses of the genus Crinivirus, family Closteroviridae (4). Some plants also exhibited leaf crumpling and curling, symptoms characteristic of begomovirus (genus Begomovirus, family Geminiviridae) infection. Leaves of plants had large populations of silverleaf whitefly (Bemisia tabaci biotype B), a known vector of begomoviruses and some criniviruses. Leaf samples were collected from four plants from California and 13 plants from three separate fields in Arizona. Total RNA was extracted using RNeasy kits (Qiagen, Valencia, CA) and subjected to reverse transcription (RT)-PCR using degenerate primers specific to the conserved polymerase region of a diverse group of criniviruses (3). The expected 500-bp RT-PCR product was amplified from RNA obtained from all the symptomatic melons, whereas no fragment was obtained from RNA extracted from leaves of healthy controls. The 500-bp fragment from four plants from California and five plants from Arizona was sequenced and found to be identical for all nine isolates (GenBank Accession No. EF121768). The sequenced region of the California and Arizona Cucurbit yellow stunting disorder virus (CYSDV) isolates was identical to that from a CYSDV isolate from Texas (GenBank Accession No. AY242077) and shared 99% identity with a CYSDV isolate from Spain (GenBank Accession No. AJ537493). Subsequent RT-PCR analysis of RNA from these nine plants, with primers specific to the capsid protein (CYScp1F 5′ GCACGGTGACCAAAAGAAG 3′ and CYScp1R 5′ GAA-CATTCCAAAACTGCGG 3′) and HSP70h (CYShspF 5′ TGATGTATG-ACTTCGGAGGAGGAAC 3′ and CYShspR 5′ TCAGCGGACAAA-CCACCTTTC 3′) genes of CYSDV, was used to further confirm virus identity. The expected fragments, 202 and 175 bp, respectively, were amplified from all nine samples, but not from healthy controls. DNA extracts also were prepared from these nine melon samples from California and Arizona, and PCR assays were conducted for the begomoviruses Cucurbit leaf crumple virus (CuLCrV) and Squash leaf curl virus (SLCV) (2). The four plants from California showed crumpling, curling, and yellowing symptoms; all were infected with SLCV and one with CuLCrV. The five plants from Arizona showed mostly yellowing symptoms; five were infected with SLCV and two with CuLCrV. These results demonstrate begomovirus and crinivirus co-infection. The economic impact of mixed infections with CYSDV and begomoviruses remains to be determined. Incidence of CYSDV in melon was directly correlated with incidence of its vector, B. tabaci. Host range information has demonstrated that the primary hosts of CYSDV are members of the Cucurbitaceae (1). A number of experimental hosts have been documented; however, the extensive vegetable production in the southwestern United States warrants further study on the potential for the establishment of local reservoirs in both crop and weed species in the area. The virus causes economic losses worldwide for curcurbit production.
References: (1) A. Celix et al. Phytopathology 86:1370, 1996. (2) R. Gilbertson. Ann. Rep. CA Melon Res. Board, 2001. (3) R. Martin et al. Acta Hortic. 656:137, 2004. (4) G. Wisler et al. Plant Dis. 82:270. 1998.