Authors
Raymond J. Taylor and
Julie S. Pasche, Department of Plant Pathology, North Dakota State University, Fargo 58105;
Courtney A. Gallup and
H. David Shew, Department of Plant Pathology, North Carolina State University, Raleigh 27695; and
Neil C. Gudmestad, Department of Plant Pathology, North Dakota State University, Fargo
ABSTRACT
Phytophthora spp. are pathogenic to many plant species worldwide, and late blight, caused by Phytophthora infestans, and pink rot, caused by P. erythroseptica, are two important diseases of potato. Another Phytophthora sp., P. nicotianae, was recovered from pink-rot-symptomatic tubers collected from commercial fields in Nebraska, Florida, and Missouri in 2005, 2006, and 2007, respectively. P. nicotianae also was recovered from foliage obtained from commercial potato fields in Nebraska and Texas exhibiting symptoms very similar to those of late blight. Isolates of P. cactorum also were recovered from foliar infections in a commercial potato field in Minnesota in 2005. Natural infection of potato foliage by P. cactorum and infection of wounded potato tuber tissue via inoculation with zoospores of P. capsici are reported here for the first time. Isolates of P. nicotianae, regardless of origin, were primarily of the A1 mating type. All isolates of P. nicotianae and P. cactorum were sensitive to the fungicide mefenoxam. Optimum growth of P. nicotianae, P. erythroseptica, and P. cactorum in vitro occurred at 25°C; however, only P. nicotianae sustained growth at 35°C. Regardless of the tissue of origin, all isolates of P. nicotianae and P. cactorum were capable of infecting potato tubers and leaves. However, isolates of P. nicotianae were less aggressive than P. erythroseptica isolates only when tubers were not wounded prior to inoculation. Pink rot incidence varied significantly among potato cultivars following inoculation of nonwounded tubers with zoospores of P. nicotianae, ranging from 51% in Red Norland to 19% in Atlantic. Phytophthora spp. also differed significantly in their ability to infect potato leaves. Highest infection frequencies were obtained with P. infestans and levels of infection varied significantly among P. nicotianae isolates. The rate of foliar lesion expansion was similar among isolates of P. nicotianae and P. infestans. Whereas P. infestans infections yielded profuse sporulation, no sporulation was observed with foliar infections of P. nicotianae.