Authors
U. N. Nanayakkara and
W. Uddin, Department of Plant Pathology, The Pennsylvania State University, University Park 16802; and
L. E. Datnoff, Department of Plant Pathology, University of Florida, Gainesville 32611
ABSTRACT
Silicon amendments have been proven effective in controlling fungal diseases of various crops. However, effects of silicon amendments on gray leaf spot (Magnaporthe oryzae) of perennial ryegrass are not known. Studies were conducted in controlled-environment chambers and microplots where perennial ryegrass pots were buried among perennial ryegrass turf to determine the effects of silicon amendments on gray leaf spot development. Plants were grown in two soil types: peat:sand mix (soil Si = 5.2 mg/liter) and Hagerstown silt loam (soil Si = 70 mg/liter). Both soil types were amended with two sources of silicon—wollastonite and calcium silicate slag—at 0, 0.5, 1, 2, 5, and 10 metric tons/ha and 0, 0.6, 1.2, 2.4, 6, and 12 metric tons/ha, respectively. Nine-week-old perennial ryegrass was inoculated with M. oryzae. Gray leaf spot incidence and severity were assessed 2 weeks after inoculation. Gray leaf spot incidence and severity of perennial ryegrass significantly decreased by different rates of wollastonite and calcium silicate slag applied to both soils under both experimental conditions. Tissue silicon content increased consistently with increasing amount of silicon in the soils, while disease incidence decreased consistently with increasing tissue silicon content in all four soil and source combinations under both experimental conditions. These findings suggest that silicon amendments may be utilized in integrated gray leaf spot management programs on perennial ryegrass.