Digitalis purpurea (Scrophulariaceae), foxglove, is used in flower gardens. In the spring of 2008, leaf blight was observed in a nursery near Biella (northern Italy) on 30% of potted 30-day-old plants grown in a peat substrate at temperatures from 20 to 25°C and relative humidity at 75 to 80%. Semicircular, water-soaked lesions developed on leaves just above the soil line at the blade-petiole junction and later along the leaf margins. Lesions expanded for several days along the midvein until the entire leaf was affected. Blighted leaves turned brown, withered, clung to the shoots, and matted on the surrounding foliage. Diseased tissue was disinfested for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 100 mg/liter of streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently and readily recovered, then transferred and maintained in pure culture (4). The isolates of R. solani obtained from affected plants successfully anastomosed with tester isolate AG 1 (ATCC 58946). The hyphal diameter at the point of anastomosis was reduced, the anastomosis point was obvious, and cell death of adjacent cells was observed. Results were consistent with other reports on anastomosis reactions (2). Pairings were also made with tester isolates AG 2, 3, 4, 6, 7, 11, and AG BI and anastomosis was not observed. Ten-day-old colonies grown on PDA appeared light brown, rather compact, and radial. Numerous sclerotia of uniform size (0.5 to 3 mm in diameter) and sometimes joined laterally were formed. Descriptions of mycelium and sclerotia were typical for subgroup IA Type 2 (4). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 724-bp fragment showed a 99% homology with the sequence of R. solani (GenBank Accession No. EU591800). The nucleotide sequence has been assigned GenBank Accession No. FJ467490. For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 10 days. Plants of 30-day-old D. purpurea were grown in 10-liter containers (6 plants per container) in a steam disinfested peat/clay/perlite (70:20:10) substrate. Disks of PDA cultures were placed on leaves (1 cm2 of mycelium per plant). Plants inoculated with PDA alone served as control treatments. Three replicates were used. Plants were maintained in a growth chamber at 24 ± 1°C with 12 h light/dark. First symptoms developed 12 days after the artificial inoculation. R. solani was consistently reisolated from infected leaves and stems. Control plants remained healthy. The pathogenicity test was repeated twice. R. solani was isolated from a small percentage of infected seeds of D. purpurea in India (3). This is, to our knowledge, the first report of leaf blight of D. purpurea caused by R. solani in Italy as well as in Europe. The spread of R. solani in nurseries might cause a decrease in trade.
References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions in: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, the Netherlands, 1996. (3) K. K. Janardhanan and D. Ganguly. Indian Phytopathol. 16:379, 1963. (4) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St Paul, MN, 1991.