Authors
Alexander I.
Putman
,
Former Graduate Research Assistant, Department of Plant Science, University of Connecticut, Storrs 06269
;
Geunhwa
Jung
,
Assistant Professor, Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst 01003
; and
John E.
Kaminski
,
Assistant Professor, Department of Crop and Soil Sciences, The Pennsylvania State University, University Park 16802
ABSTRACT
Chemical management of dollar spot in turf may lead to the development of Sclerotinia homoeocarpa populations with reduced fungicide sensitivity. The objective of this study was to determine the scope of S. homoeocarpa insensitivity to fungicides commonly used to control dollar spot on golf courses in the northeastern United States. A total of 965 and 387 isolates of S. homoeocarpa from intensively or individually sampled sites, respectively, were evaluated for in vitro sensitivity to iprodione, propiconazole, and thiophanate-methyl. Mean baseline sensitivities to iprodione and propiconazole were 0.2763 and 0.0016 μg a.i. ml--1, respectively, and all baseline isolates were sensitive to thiophanate-methyl at 1,000 μg a.i. ml--1. When compared with the baseline population, 14 and 18 of 20 total populations were less sensitive to iprodione and propiconazole, respectively. Individually sampled isolates obtained from fairways, putting greens, or tees were less sensitive to iprodione and propiconazole when compared with the baseline. For thiophanate-methyl, five populations were sensitive, six were resistant, and the remaining nine populations contained various proportions (2 to 92%) of resistant isolates. Individually sampled isolates obtained from fairways and putting greens were evaluated for associations in sensitivity among the three fungicides. A weak but positive correlation in sensitivity to iprodione and propiconazole was observed for isolates resistant to thiophanate-methyl but correlations for sensitive isolates were not significant. Furthermore, isolates with highly reduced sensitivity to iprodione clustered in a narrow range of propiconazole sensitivity. These data suggest the possible existence of resistance mechanisms common to diverse fungicide classes. Overall, results indicate that insensitivity of S. homoeocarpa to iprodione, propiconazole, and thiophanate-methyl exists in varying degrees on golf courses in the northeastern United States.