Authors
Kimberly S. Chapman, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907;
George W. Sundin, Department of Plant Pathology, 103 CIPS, Michigan State University, East Lansing 48824; and
Janna L. Beckerman, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Abstract
Venturia inaequalis, the causal agent of apple scab, is controlled primarily by fungicides. Long-term, extensive fungicide use has led to the development of resistance to multiple fungicides. To assess fungicide resistance, isolates of V. inaequalis were collected from Indiana and Michigan orchards. Single-spore derived isolates were evaluated by mycelium growth assays with previously determined discriminatory doses on media containing dodine, kresoxim-methyl, myclobutanil, or thiophanate-methyl. Of 195 isolates tested, 5.2, 0.7, 57.0, and 92.6% of isolates were found to be resistant to dodine, kresoxim-methyl, myclobutanil, and thiophanate-methyl, respectively. This is the first report of kresoxim-methyl field resistance in these states. Isolates resistant or shifted to a single fungicide were often found to have multiple fungicide resistance. Of all isolates tested, 38% were identified as resistant or shifted to two fungicides, and 12% were resistant or shifted to all four fungicides tested. No fitness penalty was found for isolates resistant to multiple fungicides based on a statistical analysis of mycelial growth and conidial production.