Authors
Y. B. Duan, College of Forestry, Henan University of Science and Technology, Luoyang, Henan, 471003, China and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, 210095, China;
Z. Z. Yu, College of Forestry, Henan University of Science and Technology, Luoyang, Henan, 471003, China and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China; and
Y. B. Kang, College of Forestry, Henan University of Science and Technology, Luoyang, Henan, 471003, China
Tree peony (Paeonia suffruticosa Andrews), a perennial ligneous deciduous shrub in the Paeoniaceae family, is known for its beautiful and charming flowers. It is regarded as the flower symbol of China and is cultivated throughout the country. In August 2008, a previously unknown leaf spot was observed on peony cultivated in the Mountain Peony Garden located in the Luoyang area of Henan Province, China. In 2009, the leaf spot disease was observed in some gardens in the city of Luoyang, China. Initial symptoms appeared as small, round or irregular, brown, necrotic lesions in the middle of leaves. These lesions gradually enlarged up to 1 cm in diameter and were circular or irregular, brown to dark brown, and brown on the margins. In a humid atmosphere, black, sessile, discoid acervuli developed on the lesions, and the lesions sometimes became waxy-like, eventually coalesced, and nearly covered the entire leaf. Conidia produced in acervuli had two morphologically different types. One type had a single basal appendage, ellipsoid to fusiform, transversely three septate, 16 to 20 × 5 to 7 μm, smooth, basal cell obconic with a truncate base, subhyaline, 3 to 5 μm long; two central cells subcylindrical to dolioform, brown to dark brown, 8 to 10 μm long, apical cell conical with rounded apex, concolorous with the central cells, 4 to 5 μm long, basal appendage filiform, unbranched, excentric, 4 to 8 μm long. The other type had a single appendage at both ends, fusiform to subcylindrical, transversely three septate, 16 to 20 × 4 to 5 μm, smooth; basal cell obconic with a truncate base, subhyaline, 4 to 5 μm long; two central cells subcylindrical to dolioform, pale brown, 8 to 11 μm long; apical cell conical with an acute apex, hyaline to subhyaline, 4 to 5 μm long; basal appendage filiform, unbranched, excentric, 4 to 8 μm long; apical appendage filiform, unbranched, 4 to 8 μm long. Single conidial isolates of both types of conidia yielded identical colonies, which produced both types of conidia on potato dextrose agar (PDA), thus showing that both types of conidia belonged to the same fungus. Colonies on PDA were slimy in appearance, yellow to villous with an irregular taupe margin; reverse brown to grayish brown. Cultural and conidial characteristics of the isolates were similar to those of Seimatosporium botan (1). The DNA sequence for the fungus showed internal transcribed spacer region (ITS1-5.8S-ITS2) sequences (GenBank Accession No. HM067840) with 93% sequence identity to S. discosioides (Accession Nos. EF600970.1 and EF600969.1). This is the first submission of a S. botan sequence to GenBank. To determine pathogenicity, 20 healthy leaves of P. suffruticosa were inoculated by spraying a conidial suspension of S. botan onto the foliage. Ten leaves were sprayed with sterile water and served as controls. Plants were covered with plastic for 24 h to maintain high relative humidity. After 15 days, the symptoms described above were observed on leaves in all inoculated plants, whereas symptoms did not develop on the control plants. The pathogen was reisolated from inoculated leaves, fulfilling Koch's postulates. On the basis of morphology and ITS region sequences, we conclude that S. botan is the causal agent of leaf spots of P. suffruticosa. There is a report of S. botan on P. suffruticosa stems in Japan (1), but to our knowledge, this is the first report of leaf spot disease of peony caused by S. botan in China.
References: (1) S. Hatakeyama et al. Mycoscience 45:106, 2004.