Link to home

First Report of Pepino mosaic virus Infecting Greenhouse Cherry Tomatoes in Greece

January 2011 , Volume 95 , Number  1
Pages  78.2 - 78.2

K. E. Efthimiou, Aristotle University of Thessaloniki, Faculty of Agriculture, Plant Pathology Lab, P.O. Box 269, 54124, Thessaloniki, Greece; A. P. Gatsios, Directorate of Agriculture, Plant Protection, Preveza 48100, Greece; K. C. Aretakis, Asklipiou 15, Preveza 48100, Greece; L. C. Papayiannis, Agricultural Research Institute, P.O. Box 22016, Nicosia 1516, Cyprus; and N. I. Katis, Aristotle University of Thessaloniki, Faculty of Agriculture, Plant Pathology Lab P.O. Box 269, 54124, Thessaloniki, Greece



Go to article:
Accepted for publication 28 October 2010.

Pepino mosaic virus (PepMV) (genus Potexvirus, family Flexiviridae) is a mechanically transmitted virus that has emerged as a significant problem of greenhouse tomato crops in Europe and around the world during the past 10 years (1). In spring of 2010, mosaic symptoms were observed on leaves of cherry tomato (Lycopersicon esculentum var. cerasiforme) greenhouse crops (hybrids Shiren, Tomito, and Rubino top) in the areas of Drymos and Vonitsa, located at Aitoloakarnania Prefecture, in Greece. A total of 63 tomato samples (55 from symptomatic and 8 from asymptomatic plants) were collected from 11 greenhouses where disease incidence ranged from 10 to 20%. All samples were tested by double-antibody sandwich (DAS)-ELISA using polyclonal antibodies from BIOREBA, AG (Reinach, Switzerland) for the presence of PepMV, Cucumber mosaic virus (CMV), and Tomato mosaic virus (ToMV). Leaf tissue from PepMV-, CMV-, and ToMV-infected samples and virus-free tomato plants were included in all tests as positive and negative controls, respectively. Results showed that 53 symptomatic samples collected from all greenhouses were infected with PepMV and two were co-infected with PepMV and CMV. Total RNA was extracted from all infected plants with a commercially available kit (Qiagen, Hilden, Germany) and amplified by conventional and real-time reverse transcription (RT)-PCR, using previously reported protocols (2). Positive and negative controls were also included in each assay. The 200-bp amplified PCR fragments of Triple Gene Block 3 (TGB3) obtained from five infected samples were purified and both strands were sequenced. Sequencing data were analyzed, deposited in the GenBank, and compared with other reported sequences. In addition, leaf tissue from five samples infected with only PepMV was used for mechanical inoculation of four plants of Nicotiana glutinosa, N. benthamiana, and tomato (L. esculentum FA 179 hybrid) plants. As negative controls, two plants from each species were used. Sequencing analysis showed that all five PepMV sequences were identical (GenBank Accession Nos. FR686904 to FR686908) and possessed 100% identity PepMVstrain CH2 (DQ000985). Inoculation results showed that the virus was successfully transmitted to N. benthamiana and tomato plants which developed mosaic symptoms, and tested positive by DAS-ELISA and RT-PCR. N. glutinosa plants did not develop any symptoms and were found to be free of PepMV when tested by DAS-ELISA and RT-PCR. To our knowledge, this is the first report of PepMV in Greece. Further studies on the disease prevalence and incidence and its economic impact on tomato production are required. PepMV is currently under quarantine status in the EU and therefore new protective measures should be recommended to prevent the spread of PepMV to other regions of Greece.

References: (1) I. M. Hanssen and B. P. H. J. Thomma. Mol. Plant Pathol. 11:179, 2010. (2) K. S. Ling et al. J. Virol. Methods 144:65, 2007.



© 2011 The American Phytopathological Society