Link to home

Five Species of Xanthomonads Associated with Bacterial Leaf Spot Symptoms in Tomato from Tanzania

May 2012 , Volume 96 , Number  5
Pages  760.2 - 760.2

E. R. Mbega, Danish Seed Health Centre, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Hoejbakkegaard, Allé 13, 2630 Taastrup, Denmark and African Seed Health Centre, Department of Crop Science and Production, P.O. Box 3005, Sokoine University of Agriculture, Morogoro, Tanzania; R. B. Mabagala, African Seed Health Centre, Department of Crop Science and Production, P.O. Box 3005, Sokoine University of Agriculture, Morogoro, Tanzania; J. Adriko, O. S. Lund, E. G. Wulff, and C. N. Mortensen, Danish Seed Health Centre, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Hoejbakkegaard, Allé 13, 2630 Taastrup, Denmark



Go to article:
Accepted for publication 28 February 2012.

From 2008 to 2010, leaf spot symptoms were observed on tomato (Solanum lycopersicum Mill.) plants growing in the northern, central and southern highland regions of Tanzania. Symptoms were dark, circular to irregular, water-soaked spots surrounded by chlorotic halos. A total of 136 yellow-pigmented, gram-negative bacteria were isolated from 117 symptomatic plants on nutrient agar. Loopfuls from 24-h-old bacterial cultures were suspended in 500 μl of sterile distilled water and 50 μl of the suspensions were printed on strips of 3MM Whatman chromatography paper. Isolates belonging to the genus Xanthomonas were subsequently identified by PCR amplification of a 402-bp fragment of the Xanthan synthesis pathway gene, gumD (primers: X-gumD-fw 5′GGCCGCGAGTTCTACATGTTCAA and X-gumD-rv 5′CACGATGATGCGGATATCCAGCCACAA). Thirty of the 136 isolates reacted positively in gumD PCR. Pathogenicity of the 30 gumD-positive isolates was confirmed by spraying cell suspensions containing 108 CFU/ml (OD600 = 0.01) of each isolate on four 14-day-old tomato seedlings (cv. Tanya) and sweet pepper (Capsicum annuum L.) cv. Early-Calwonder in a growth chamber at 28 ± 2°C and maintained under humid conditions. Plants sprayed with X. euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri (2) strains NCPPB 2968, 422, 4321, and 881, respectively, served as positive controls. Plants sprayed with sterile distilled water alone served as negative control. The 30 tested isolates were pathogenic on tomato and pepper within 7 to 14 days and induced similar symptoms as those observed on tomato field plants and plants sprayed with reference strains of xanthomonads. Symptoms were not observed on negative control plants. Yellow-pigmented colonies were reisolated from symptomatic plants and their identity confirmed with GumD-PCR. Based on partial sequencing of the fyuA gene using primers developed by Young et al. (4), all 30 isolates were subsequently grouped into five clusters of the genus Xanthomonas. With recent taxonomy of Xanthomonas (2,4), four of these clusters displayed more than 99% sequence identity to known species of Xanthomonas: X. arboricola EU498923 (18 isolates); X. perforans EU498944 (6 isolates), X. vesicatoria EU498876 (2 isolates), and X. euvesicatoria EU498912 (1 isolate). The remaining three isolates formed a fifth cluster displaying less than 94% sequence identity to any known sequence of fyuA (93% matching strains: X. axonopodis EU498914; X. melonis EU498918, and X. cucurbitae EU498891). Representative sequences for each of the five clusters of bacterial leaf spot (BLS) strains mentioned have been deposited in GenBank (Nos. JQ418487, JQ418488, JQ418489, JQ418490, and JQ418491, respectively). BLS of tomato plants and its economic impact has been reported in Tanzania (3). Different BLS causal agents have recently been reported from the Southwest Indian Ocean Region (1), however, corresponding information for Tanzania has been lacking. On the basis of fyuA sequences, this study reports four genotypes of BLS causal agents corresponding to known species of Xanthomonas. In addition, Xanthomonas isolates with a fyuA genotype not previously assigned to any known species has been identified as part of the BLS pathosystem in Tanzania.

References: (1) A. A. Hamza et al. Plant Dis. 94:993, 2010. (2) B. J. Jones et al. Syst. Appl. Microbiol. 27:755, 2004. (3) K. C. Shenge et al. Afr. J. Biotechnol. 6:15, 2007. (4) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.



© 2012 The American Phytopathological Society