Link to home

First Report of Rhizoctonia solani AG4 HG-II Infecting Potato Stems in Idaho

November 2012 , Volume 96 , Number  11
Pages  1,701.2 - 1,701.2

J. W. Woodhall , The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK ; P. S. Wharton , Aberdeen Research and Extension Center, University of Idaho, Aberdeen 83210 ; and J. C. Peters , The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK



Go to article:
Accepted for publication 30 July 2012.

The fungus Rhizoctonia solani is the causal agent of stem canker and black scurf of potato (Solanum tuberosum). R. solani is a species complex consisting of 13 anastomosis groups (AGs) designated AG1 to 13 (2, 3). Stems of potato (cv. Russet Norkotah) with brown lesions were recovered from one field in Kimberley, Idaho, in August 2011. Using previously described methods (3), R. solani was recovered from the symptomatic stems and one representative isolate (J15) was selected for further characterization. Sequencing of the rDNA ITS region of isolate J15 was undertaken as previously described (3) and the resulting rDNA ITS sequence (HE667745) was 99% identical to sequences of other AG4 HG-II isolates in GenBank (AF354072 and AF354074). Pathogenicity of the isolate was determined by conducting the following experiment. Mini-tubers of cv. Santé were planted individually in 1-liter pots containing John Innes Number 3 compost (John Innes Manufacturers Association, Reading, UK). Pots were either inoculated with J15, an isolate of AG3-PT (Rs08), or were not inoculated. Each treatment was replicated four times. Inoculum consisted of five 10-mm-diameter potato dextrose agar plugs, fully colonized by the appropriate isolate, placed in the compost approximately 40 mm above each seed tuber. Pots were held in a controlled environment room at 21°C with 50% relative humidity and watered as required. After 21 days, plants were assessed for disease. No symptoms of the disease were present in non-inoculated plants. In the Rs08 (AG3-PT) inoculated plants, all stems displayed large brown lesions and 20% of the stems had been killed. No stem death was observed in J15 (AG4 HG-II) inoculated plants. However, brown lesions were observed in three of the four J15 (AG4 HG-II) inoculated plants. These lesions were less severe than in plants inoculated with the Rs08(AG3-PT) inoculated plants and were present in 40% of the main stems. In the J15 (AG4 HG-II) inoculated pots, R. solani AG4 HG-II was reisolated from the five symptomatic stems, thereby satisfying Koch's postulates. To our knowledge, this is the first report of AG4 HG-II causing disease on potatoes in Idaho. AG4 has been isolated from potato previously from North Dakota, although the subgroup was not identified (1). The only previous report where AG4 HG-II was specifically determined to cause disease on potato was in Finland, but the isolate could not be maintained and Koch's postulates were not completed (3). The present study shows that AG4 HG-II can cause stem disease in potatoes, although disease does not develop as severely or as consistently as for AG3-PT. However, as demonstrated with isolates of AG2-1 and AG5, even mild stem infection can reduce tuber yield by as much as 12% (4). AG4 HG-II is a pathogen of sugar beet in Idaho, which was grown previously in this field. This history may have contributed to high levels of soilborne inoculum required to produce disease on potato.

References: (1) N. C. Gudmestad et al. Page 247 in: J. Vos et al. eds. Effects of Crop Rotation on Potato Production in the Temperate Zones. Kluwer, Dordrecht, Netherlands, 1989. (2) M. J. Lehtonen et al. Agric. Food Sci. 18:223, 2009. (3) J. W. Woodhall et al. Plant Pathol. 56:286, 2007. (4) J. W. Woodhall et al. Plant Pathol. 57:897, 2008.



© 2012 The American Phytopathological Society