Authors
D. S.
Mollov
,
Department of Plant Pathology, University of Minnesota, St. Paul 55108
;
S. A.
Subbotin
,
California Department of Food and Agriculture, Sacramento, CA 95832
; and
Carl
Rosen
,
Department of Soil, Water, and Climate, University of Minnesota, St. Paul 55108
In the summer of 2011, two independent garlic samples from Morrison and Dakota counties and in 2012 one garlic sample from Carver county in Minnesota were submitted by commercial growers to the University of Minnesota Plant Disease Clinic for disease analyses. Symptoms of the above-ground plant parts were stunting and chlorosis. Symptoms of bulbs were necrosis, underdevelopment, and distortion. Upon microscopic examination, phytonematodes exuded into the surrounding water droplet. Nematodes were present in the protective leaves, abscission zone, and cloves in all submitted bulbs (n = 18) for analyses. Morphometric examination of females, males, and juveniles determined that they were Ditylenchus dipsaci. Nematodes extracted from garlic cloves were fixed in TAF (97 ml formalin [40%], 2 ml triethanolamine, and 91 ml dH2O). Morphological observations and measurements were made under an Olympus BX51 microscope equipped with a Nomarski differential interference contrast. Female (n = 6) measurements were: L = 1.411 to 1.636 mm, a = 38 to 44, b = 5.8 to 8.0, c = 14 to 17, stylet = 11.5 to 12.3 μm, V = 79 to 81%, and tail = 95 to 105 μm. The body was almost straight, when heat relaxed, lip region flattened, median bulb oval, and isthmus elongate and slender. The basal pharyngeal bulb overlapped the intestine. The post-vulval uterine branch was about half of vulva-anus distance. The tail was conoid with a pointed terminus. Male (n = 9) measurements were: L = 1.372 to 1.558 mm, a = 40 to 50, b = 6.5 to 7.0, c = 14 to 16, stylet = 11.5 to 12.3 μm, spicules = 22 to 27 μm, and gubernaculum = 9 to 10 μm. The bursa was leptoderan and spicules were curved with simple gubernaculum. Morphology and morphometrics of females and males of D. dipsaci from Minnesota generally fit the descriptions provided for the type and other populations by Hopper (1) and other authors. Several specimens were also taken for molecular identification. DNA extraction, PCR, and sequencing protocols were as described by Subbotin et al. (2). The TW81 and AB28 primers were used for amplification of ITS-rRNA region and the D2A and D3B primers were used for amplification of the D2-D3 expansion segments of 28S rRNA gene. Comparison of the ITS and D2-D3 of 28 rRNA gene sequences showed 100 and 99% identity with corresponding gene sequences of D. dipsaci published in the GenBank (2). The sequences were submitted in the GenBank under accession numbers JX123258 and X123259. This nematode problem has not been known to occur in either of these locations previously. The most likely source of introduction of D. dipsaci are imported garlic seed bulbs. To our knowledge, this is the first report of D. dipsaci affecting garlic or any other crops in Minnesota. The garlic produced in these locations was considered unmarketable and complete loss to the farmers. The presence of D. dipsaci could have a significant economic impact in the emerging multi-million dollar garlic industry in Minnesota.
References: (1) D. J. Hooper. Ditylenchus dipsaci. CIH Descriptions of Plant-Parasitic Nematodes Set 1, No. 14, 1972. (2) S. A. Subbotin et al. Phytopathology 95:1308, 2005.