Link to home

First Report of Cobweb Disease Caused by Cladobotryum mycophilum on the Edible Mushroom Pleurotus eryngii in Korea

September 2012 , Volume 96 , Number  9
Pages  1,374.1 - 1,374.1

M. K. Kim and Y. H. Lee , Division of Environment-Friendly Research, Gyeongsangnam-do Agricultural Research and Extension Service, Jinju 660-360, Republic of Korea ; K. M. Cho , Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea ; and J. Y. Lee , Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea. The project was funded by the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ9071812011)



Go to article:
Accepted for publication 24 May 2012.

Pleurotus eryngii is one of the most commercially important mushrooms in Korea. In May 2009, unusual symptoms were observed in P. eryngii grown in mushroom farms in Changnyeong and Hapcheon, in Gyeong-nam Province, Korea. One of the main symptoms was cobweb-like growth of fungal mycelia over the mushroom surface. Colonies on the surface rapidly overwhelmed the mushrooms, which turned pale brown or yellow. Mushrooms eventually turned dark brown and became rotten. Colonies of the isolates on potato dextrose agar (PDA) were yellowish, and a reddish or orange color was evident in the agar. The colonies grew 20 to 30 mm per day on PDA. Large spores with a single septum were produced on vertically branched conidiophores bearing two to four, mostly three to four, sporogenous cells, ranging from 17.2 to 20.5 μm long and 8.0 to 10.2 μm thick. The shape of the conidia was ellipsoid and obovoid. These morphological characteristics are consistent with descriptions of Cladobotryum mycophilum, a causal agent of cobweb disease in Agaricus bisporus (1,4). To identify the isolated fungal pathogen, the ITS region was amplified with ITS1 and ITS4 primers and sequenced. The sequence data from the isolate was deposited in GenBank (Accession No. JF693809). A BLAST search showed that the isolated strain belonged to a species of Cladobotryum. The highest similarity (99.5%) was to the ITS sequence of C. mycophilum (teleomorph Hypomyces odoratus) (GenBank Accession Nos. JF505112 and Y17096) (3,4). The strain that was tested for pathogenicity was grown on PDA at 25°C for 72 h. The inoculum was prepared by flooding the agar surface with 10 ml of sterilized double distilled water and scraping it with a spatula. The resulting spore suspension was filtered through three layers of cheesecloth. Conidial concentration was adjusted with a hemacytometer to 1 × 106 conidia ml–1. A conidia suspension was inoculated onto each of several stages of mushroom cultivation with a pipette. The control was spotted with double distilled water. In the case of infection during the inoculation and spawn running stages, the fungal mycelia colonized the media and hampered development of the mycelium of P. eryngii. In the regeneration and primordia formation stages of the host, the mycelium of the pathogen covered the surface of the plastic bottle containing the substrates and developed many spores. In the growing and harvesting stages, the surface of mushroom was overwhelmed by the mycelium of the fungal pathogen and turned pale or dark brown, accompanied by cracking of the stipe surface and finally rotting with a foul odor. These symptoms were similar to the observation from natural infection. The symptoms of the cobweb-like disease in A. bisporus (1,2) were observed within 5 to 7 days of inoculation with conidia suspensions of C. mycophilum. Fungi isolated from inoculated mushrooms were shown to be identical, based on phenotypic characteristic, to the inoculated strain used in these pathogenicity tests. No symptoms were observed on controls. To our knowledge, this is the first report on the occurrence of C. mycophilum on the edible mushroom P. eryngii in Korea. Based on the pathogenicity test results, the pathogen could attack P. eryngii in any cultivation stage, making it a potentially serious fungal pathogen in P. eryngii.

References: (1) C. G. Back et al. J. Gen. Plant Pathol. 76:232, 2010. (2) R. H. Gaze. Mushroom J. 546:23, 1995. (3) F. J. Gea et al. Plant Dis. 95:1030, 2011. (4) H. M. Grogan and R. H. Gaze. Mycol. Res. 104:357, 2000.



© 2012 The American Phytopathological Society