Authors
S. E. Cho,
J. H. Park, Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-701, Korea;
S. H. Hong, Institute of Environment and Ecology, Korea University, Seoul 136-701, Korea; and
H. D. Shin, Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-701, Korea
Japanese hop (Humulus japonicus Siebold & Zucc. = H. scandens (Lour.) Merr.), native to East Asia, is an annual, climbing or trailing vine. The vines can spread to cover large areas of open ground or low vegetation, eventually blanketing the land and vegetation. Pollen of H. japonicus is allergenic, and this species is considered as one of the important causes of pollinosis in Korea and China. It is a notorious invasive weed in the United States and also in France, Hungary, and Italy (1). In September 2012, zonate leaf spots were observed on Japanese hops growing in wetlands in Yeongdong County of Korea. A voucher specimen was preserved in the Korea University Herbarium (KUS-F26901). Initial symptoms included grayish-green to grayish-brown spots without border lines. As the lesions enlarged, they coalesced, leading to leaf blight. Sporophores on the leaf lesions were dominantly hypophyllous, rarely epiphyllous, solitary, erect, easily detachable, and as long as 700 μm. The upper portion of the sporophores consisted of a pyramidal head was ventricose, 320 to 520 μm long and 110 to 150 μm wide. The fungus was isolated from leaf lesions and maintained on potato dextrose agar (PDA). Sclerotia were produced on PDA after 4 to 5 weeks at 18°C without light, but conidia were not observed in culture. These morphological and cultural characteristics were consistent with those of Hinomyces moricola (I. Hino) Narumi-Saito & Y. Harada (= Cristulariella moricola (I. Hino) Redhead) (3,4). An isolate was preserved in the Korean Agricultural Culture Collection (Accession No. KACC46955). Genomic DNA was extracted using the DNeasy Plant Mini DNA Extraction Kit (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 452 bp was deposited in GenBank (Accession No. KC460209). A BLAST search in GenBank revealed that the sequence showed an exact match with those of C. moricola (JQ036181 ex Acer negundo and JQ036182 ex Glycine max). To determine the pathogenicity of the fungus, according to the procedure of Cho et al. (2), sporophores with the pyramidal head were carefully detached from a lesion on the naturally infected leaf using a needle. Each sporophore was transferred individually onto five places of four detached healthy leaves. The leaves were placed in dew chambers and incubated at 16°C. Symptoms were observed after 2 days on all inoculated leaves. A number of sporophores and immature sclerotia which were morphologically identical to the ones observed in the field were formed on the abaxial surface of the leaf 2 weeks after inoculation. The pathogen was reisolated from lesions on the inoculated leaves, confirming Koch's postulates. No symptoms were observed on the control leaves kept in humid chambers for 2 weeks. H. moricola was known to cause zonate leaf spots and defoliation on a wide range of woody and annual plants (3). To the best of our knowledge, this is the first report of Hinomyces infection on Japanese hops in Korea.
References: (1) Anonymous. Humulus japonicus (Cannabaceae): Japanese hop. Eur. Medit. Plant Prot. Org. (EPPO). 2012. (2) S. E. Cho et al. Plant Dis. 96:906, 2012. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, Retrieved December 8, 2012. (4) S. A. Redhead. Can. J. Bot. 53:700, 1975.