Anthracnose, caused by Colletotrichum spp., is a severe disease and results in large losses in pepper (Capsicum frutescens) production in China (4). Colletotrichum boninense is one of the Colletotrichum species in pepper in China. In August 2011, anthracnose symptoms (circular, sunken lesions with orange to black spore masses) were observed on pepper fruits in De-Yang, Sichuan Province, China. Three single-spore isolates (SC-6-1, SC-6-2, SC-6-3) were obtained from the infected fruits. A 5-mm diameter plug was transferred to potato dextrose agar (PDA); the isolates formed colonies with white margins and circular, dull orange centers. The conidia were cylindrical, obtuse at both ends, and 10.5 to 12.6 × 4.1 to 5.0 μm. The colonies grew rapidly at 25 to 28°C, and the average colony diameter was 51 to 52 mm after 5 days on PDA at 25°C. Based upon these characters, the causal agent was identified as C. boninense. To confirm the identity of the isolates, the internal transcribed spacer (ITS) regions were amplified with the ITS1/ITS4 universal primers (1). The internal transcribed spacer (ITS) sequences (Accession No. JQ926743) of the causal fungus shared 99 to 100% homology with ITS sequences of C. boninense in GenBank (Accession Nos. FN566865 and EU822801). The identity of the causal agent as C. boninense was also confirmed by species-specific primers (Col1/ITS4) (2). In a pathogenicity test, five detached ripe pepper fruits were inoculated with 1 μl of a conidial suspension (106 conidia/mL) or five fruits with 1 μl of sterile water were kept as control. After 7 days in a moist chamber at 25°C, typical anthracnose symptoms had developed on the five inoculated fruits but not on control fruits. C. boninense was reisolated from the lesions, and which was confirmed by morphology and molecular methods as before. There have reports of C. boninense infecting many species of plants, including pepper (3). To our knowledge, this is the first report of C. boninense causing anthracnose on pepper in China.
References: (1) A. K. Lucia et al. Phytopathology 93:581, 2002. (2) S. A. Pileggi et al. Can. J. Microbiol. 55:1081, 2009. (3) H. J. Tozze et al. Plant Dis. 93:106, 2009. (4) M. L. Zhang. J. Anhui Agri. Sci. 2:21, 2000.