Link to home

First Report of Fusarium solani Causing Crown and Root Rot on Strawberry Crops in Southwestern Spain

January 2014 , Volume 98 , Number  1
Pages  161.2 - 161.2

A. M. Pastrana, N. Capote, B. De los Santos, F. Romero, and M. J. Basallote-Ureba, IFAPA Centro Las Torres-Tomejil, Apdo. Oficial, 41200 Alcalá del Río, Sevilla, Spain. This manuscript has been supported by the project RTA2011-00011-00-00, with 70% FEDER support: Operated Programme “Knowledge Based Economy.”



Go to article:
Accepted for publication 1 August 2013.

Spain is the fourth largest strawberry (Fragaria × ananassa) producing country in the world. Since April 2010, stunted and dead strawberry plants have been detected in four strawberry fruit production fields in Huelva (southwestern Spain) affecting less than 1% of plants. Symptoms consisted of foliage wilt, plant stunting and drying, and death of older leaves. Internal vascular and cortical tissues of plant crowns showed an orange to brown discoloration. Crowns and roots of symptomatic plants were surface sterilized in 1% sodium hypochlorite for 2 min, rinsed in sterile distilled water for 2 min, and air-dried in a laminar flow cabinet. Small disinfested pieces were transferred to petri dishes containing potato dextrose agar (PDA) and incubated for 10 days at 25°C with a 12-h photoperiod. Cultures derived from single spores were obtained, and morphological characterization was performed by microscopic examination. White to pale cream colonies developed after 10 days of incubation. Unbranched monophialides with microconidia in false heads, micro- (0 to 3 septa) and macroconidia (5 to 7 septa) wide and robust in shape, and chlamydospores were consistent with descriptions of Fusarium solani (Martius) Appel & Wollenweber emend. Snyder & Hansen (2). In addition, the fungus was isolated from asymptomatic runner plants from nurseries by the same method described above, and from soil samples from six fruit-producing fields. Soil samples were analyzed by dilution plating on Fusarium-selective agar medium (1). Genomic DNA from three isolates (FPOST-81 from dead plant ‘Sabrina,’ TOR-11 from runner plant ‘Camarosa,’ and TOR-1 from soil) was obtained with a DNA extraction kit (Isolate Plant DNA MiniKit, Bioline). A portion of the translation elongation factor-1 alpha (EF-1α) gene was sequenced using EF-1/-2 primers (3) (GenBank Accession Nos. KF275032, KF275033, and KF275034). The sequence comparison revealed a 99 to 100% match with F. solani sequences in GenBank and Fusarium-ID databases. To confirm the pathogenicity of the fungi, runner strawberry plants ‘Camarosa’ were inoculated by dipping crowns and roots into a conidial suspension (106 to 107 conidia per ml) for 30 min (8 plants per F. solani isolate) or into sterile distilled water for the controls. Plants were potted in 13-cm diameter pots with peat and maintained at 25/18°C and 70/40% relative humidity (day/night) in a growth chamber with a daily 16-h photoperiod of fluorescent light. Three plants inoculated with isolates TOR-11 and FPOST-81, and four plants inoculated with isolate TOR-1, died within 10 days after inoculation. After 8 to 12 weeks, all of the remaining inoculated plants were stunted and developed symptoms similar to those observed in the field. Production of new feeder roots was lacking or scarce. Control plants remained healthy and formed feeder roots. All plants inoculated with isolates TOR-1 and FPOST-81, and 50% of plants inoculated with TOR-11, showed brown discoloration in the crown. F. solani was re-isolated from symptomatic plants at frequencies of 100% and 80 to 100% from root and crown tissues, respectively. Although F. solani has been reported as a pathogen in other crops, to our knowledge, this is the first report of the occurrence of F. solani causing disease in strawberry plants in Spain.

References: (1) D. Bouhot and F. Rouxel. Ann. Phytopathol. 3:251, 1971. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, Blackwell Publishing, London, 2006. (3) K. O'Donnell et al. Proc. Natl. Acad. Sci. USA 95:2044, 1998.



© 2014 The American Phytopathological Society