In the early 1990s, the monopartite begomovirus Tomato yellow leaf curl virus (TYLCV) was introduced into the Dominican Republic (DO), and molecular characterization revealed it was an isolate of TYLCV-Israel (TYLCV-IL[DO]) (3,5). In 2006, a study of the variability of TYLCV in DO revealed that TYLCV-IL[DO] was associated with all samples of tomato yellow leaf curl (TYLC) tested and, thus, that the virus had been genetically stable for >15 years (2). However, in 2010 and 2011, 2 of 10 and 11 of 18 samples of TYLC, respectively, were negative for TYLCV infection based upon PCR with the TYLCV-specific primer pair, 2560v (5′-GAGAACAATTGGGATATG-3′)/1480c (5′-AATCATGGATTCACGCAC-3′), which directs the amplification of a ~1.7 kb fragment. In 2011, two such samples from the Azua Valley were tested by PCR with the 1470v (5′-AGTGATGAGTTCCCCTGTGC-3′)/UPC2 primer pair (1), and sequence analysis of the ~0.4 kb fragment amplified from both samples revealed infection with the mild strain of TYLCV (TYLCV-Mld). A primer specific for TYLCV-Mld was designed (2070v, 5′-AAACGGAGAAATATATAAGGAGCC-3′), and PCR with the 2070v/1480c primer pair directed the amplification of the expected ~2.1 kb fragment from all 11 TYLC samples collected in 2011 that were PCR-negative for TYLCV-IL[DO] infection. Sequence analyses confirmed these were TYLCV-Mld fragments. The complete TYLCV-Mld genome was amplified from two samples from the Azua Valley with Templiphi, the amplified DNA products digested with Sal I, and the resulting ~2.8 kb fragments ligated into Sal I-digested pGEM-11. The complete sequences of these isolates were 2,791 nt and 99% identical to each other and 98% identical to sequences of TYLCV-Mld isolates. The TYLCV-Mld isolates from the DO were designated TYLCV-Mld:DO:TY5:01:2011 (KJ913682) and TYLCV-Mld:DO:TY5:02:2011 (KJ913683). A multimeric clone of TYLCV-Mld:DO:TY5:01:2011 was generated in the binary vector pCAMBIA1300 by cloning a 2.2 kb Sal I-EcoRI fragment containing the intergenic region to generate a 0.8-mer (pCTYMld0.8), and then the full-length Sal I fragment was cloned into the Sal I site of pCTYMld0.8 to generate a 1.8-mer (pCTYMldDO-01-1.8). Tomato plants agroinoculated with Agrobacterium tumefaciens carrying pCTYMldDO-01-1.8 developed severe TYLC disease symptoms 10 to 14 days after inoculation, whereas plants inoculated with a strain carrying the empty vector did not develop symptoms. Samples of processing tomatoes with TYLC were collected in 2012 to 2014 in the DO and tested for TYLCV-IL[DO] and TYLCV-Mld by PCR with the 2560v/1480c and 2070v/1480c primers pairs, respectively; these samples had infections of 93% (13/14), 86% (18/21), and 61% (11/18) with TYLCV-Mld; 29% (4/14), 19% (4/21), and 56% (10/18) with TYLCV-IL[DO]; and 21% (3/14), 5% (1/21), and 28% (5/18) with both viruses, respectively. These results reveal that there has been a striking population shift in the begomovirus causing TYLC in the DO, with TYLCV-Mld becoming predominant. This may reflect selection pressure(s) favoring a small pre-existing population of TYLCV-Mld, such as new tomato varieties, or a recent introduction event, such as that described in Venezuela (4).
References: (1) R. W. Briddon and P. G. Markham. Mol. Biotechnol. 1:202, 1994. (2) R. L. Gilbertson et al. Page 279 in: Tomato yellow leaf curl virus disease. Springer, 2007. (3) M. K. Nahkla et al. Plant Dis. 78:926, 1994. (4) G. Romay et al. Australasian Plant Dis. Notes, in press, 2014. (5) R. Salati et al. Phytopathology 92:487, 2002.